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ABSTRACT

This report gives the results ot»an experimental study of the use
of feature detection for television bandwidth compression. The goal
is to determine from a set of patterns a set of simpler patteras, or
features, so that each of the original patterns can be formed, at
least approximately, by superposing the features. PFour algorithms for
determining features from patterns are described, and the results of

experiments using these algorithms are compared and evaluated.
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I INTRODUCTION

The great technical problems involved in transmitting lunar and
planetary television pictures to Earth call for a careful consideration
of potentially useful bandwidth compression techniques. A method of
coding television signals that reduces the number of bits needed to
describe a picture allows either a reduction in the bandwidth required
of the transmission channel or a more efficient use of an unalterable
channel. This report gives the results of an investigation of the use

L 3
of feature detection for such purposes.

The pictures considered in this study are limited to black and
white patterns defined on a finite grid or retina. Thus for a retina

with N cells, N bits of information are sufficient to specify any

_pattern. I1f all of the ZN.possible patterns were equally probable,

and if exact transmission of. the patterns were required, no further

. reduction in the average number of bits needed would be possible.

The classical coding results?,®,¢

show that a reduction can be
obtained if there are statistical constraints on the patterns;.‘ln this
study very specific constraints on the patterns are assumed. Every
pattern in the set of patterns to be transmitted is assumed to be com-
posed (at least approximately) of some combination of K features. A
feature is itself a pattern, usually different from those in the set

to be transmifted, and features are combined by éuperposition. Clearly,
if K < N, the number of bits neeﬂed to specify ﬁ pattern can be reduced
from N to K. e ’

et ta to. R N

*
In this report the word ."feature" is used in a precise sense that will
be defined shortly. Feature detecticn was originally developed in
“conneotion with pattern recognition problems; a discussion of 1its role

.., in that application .is given in Ref, 1. (References are listed at the

end of the report,)

B
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"In general, neither the features nor the number of features is
known a priori. They‘must be determined from s statistically representa-

tive set of sample patterns, the training set. 'If features are found

.that can ‘be combined to feeonstttute (at least approximately) thé
patterns in the training set, it is reasonable to expect that they can
also be-used to reconstitute (approximately) those patterns of which

the training set is representative, - Then if the number of features is

'less than the number ‘of retinal cells, bandwidth compression can be

échieved.it the cost of equipment complexity. The transmitter indicates
7 which of the K features are to be used in reconstituting any pattern,
r:f;jﬁu‘ . ~and the receiver, which has previously.been supplied with the features
Y denived.from the truining,.etx is capable pf‘;ggqnstituting_any pattern

similar to those in the training set.

Most of the effort in' this study was concentrated on finding and
evnluat;ng algorithms for determining the features from a training set.
' Because little theoretical guildance was available,' the search for effec-
tive algorithms was almost entirely experimental, consisting of a large

number of digital conputér runs and little in the way of theoretical
, _ support. .. The evaluation of the proposed algorithms was also done ex-
fjg»; v perimentally.. Questions such as the following were investigated:

RV

,iLf;,ﬁ L 'f ’ (1) " Por fixed K, how closely can the patterns in the . .

oo e tra.in:lng set be approximated?

- (2) How good are these features tor reconstituting
patterns in an independent testing set? '

ST . P “ . : e SV . o~
{3) How sensitive are the features to variations in ;
4':‘Uf' . r‘f parameters in the algorithm, the number of features

allowed, etc.?

e (4) How dependent is the performance of the algorithm

on the nature of the patterns?

L t;; o e The reaults of this inveltigation are given d4n this report. First
: - ..an llgorithmVLl doscribed that attempts to detormtne, for any. pettorn

.....

2
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. _ minimum error. The results of using this algorithm were reported

- ” previously,® and are briefly summarized here. A more detailed de-
scription is then givem of other algorithms that were studied in the
hope of finding an algorithm requiring less computation time, thereby
allowing experiments with larger retinas. Results of experiments with

these algorithms are given.




et ‘11 THE EXHAUSTIVE ITERATIVE ALGORITHM

It is convenient to reépresent a black and white pattern on a

retina with N cells by an N-tuple of ones and zeros. The representa-

tion can be achieved by scanning the retina from left to right and
: top to bottom, Each black cell of the pattern correaponds to a one
;ﬁi.‘ _ ‘ in the N-tuple repreaontation, and each white cell to & zero. A

i

similar representation 'ds used for feature-. Sk
S

We detine tho feature matrix [fiJ] as the K X K matrix of ones
~and zeros whose 1-th row is the N-tuple represernting the i-~th feature.

That 1is, if £

13 = 1, the j-th component (or cell) of the i-th feature

is one (or black); otherwise the j-th component (or cell) of the

i~th feature is zero (or white). The specifications for combining

) features to form M patterns are given by the composition matrix,
. [.ij]; [‘13] is8 an M X:‘K matrix of ones and zeros whose i~th row
T specifieés how the i-th pattern is to be reconstituted from the K

features, If '13 = 1, the j?fh feature is used in the reconstitution

of the i-th pattern; otherwise the j-th feature is not so used. Re-
constitution is accomplished by the superposition of all features

used.

¥
The following example illystrates these ideas. As shown on the
next page, a set of four features on a 3 X 3 retina are combined in
: y,various ways to form a set -of.five patterns (K. = 4, N =8, M = 5).
Thp composition matrix and the feature matrix 1ot;ths'example are
if - . as follows: TS UL TEUIETS & SR PR M N ;
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This example shows how a set of features can be combined to fam a

set of patterns. Our problem is the converse: given a set of patterns,

'find a set of K features from which they can be reconstituted.  Given

a training set & and the nuaber K, it may be impossible to find matrices
[‘ij] and {fij} such that each pattern in ¢ is reconstituted exactly;

Of course, if K = M or N, exact reconstitution can always be made by
selecting the features to be either the M patterns themselves or the N
distinct patterns with one black cell each. We shall usually‘b; con-
cerned with the case M > N‘> K. If exact reconstitution is impossible

“with onl}ﬁx features, we desire to find composition and feature matrices

yielding reconstituted pattems that are good approximastions to the

patterns in §.

I

¢
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Since we do not expect to be able to find composition and feature
matrices that reconstitute the patterns in & exactly, we must specify
what is meant by approximate reconstitution. Let Qf be the set of re-
constituted patterns produced by a composition matrix and a feature
matrix, Let E be the total number of cells in which the patterns in ¢
differ from those in &'. We shall attempt to find, for any & and

x
specified K, composition and feature matrices that minimize E.

The following algorithm (called the exhaustive iterative algorithm)
was developed through consultations with Prof. H. D. Block of Cornell
University. For a given training set, Q,.and.numberik,’we‘1terative1y
adjust the entries in the epsilon and feature matrices until the total
error, E, can no longer be reduced. We begin with a random.assignment

of ones and zeros for the entries in these matrices.

The adjustments are made as follows: Select an entry, say ¢, 13 of

the composition matrix. Compute the effect on E obtained by changing

only the value of this entry. If E increases, ‘do not change ‘13 1t
E decreases, make the change. If E remains the same, we ‘have three
possibilities: R R Crons R

(a) Always make the change
(b) Never make the change

(c) Make the change with some probability,, p.

Each of these possibilities defines a different mode of application of
the algorithm. We shall label these as Modes (a), (b), and (c),
according to the: posaibility selected, = V.iT

A AR e A A t AR

_fThis is obviously a very elementary definition of reconstitution error.
In lieu of other error measures, it was used throughout this study as

‘" a means o0f comparing the results achieved with the different algorithms.
. The algorithm to be described can be used with any other error measure
that is sensitive to the chunge of one retinsl cell in one pattern,
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'. : The algorithm proceeds by applying the above rule to each entry
of the composition matrix in turn. After the composition matrix has
been thus adjusted, we apply a similar process to the feature matrix.
L Select an entry, fij’ of the feature matrix and compute the effect on
s ;f‘_ E obtained by changing only the value of this entry. If E increases,
RO do not change 113.

11 E decreases, make' the change. " Otherwise apply
Modes (a), (b), or (c). ’ ‘

Ohe pass through all entries bf'the~compohit10n and feature matrices
is called an iteration. -A successful pair of matrices may result only

after several iterations. Note that as the'algorithm proceeds, E is Vi

?5Jl ' monotone non-increasing. Therefore, application of the algorithm re-
o sults in one of the fdllowing three terminal conditiéms: -~ -4 7 °°

(1) It achieves a sef of features producing a minimum

e G - T

”valuo'ot B,

(2) It wanders endlessly on a plateau above the minimum

E ltate.

2 ‘ - (3) Or, it is trapped by a local but not absolute = ..,

minimum of E.

. We have observed experimentally that using Modes (a) or (b) and
cycling through the composition and featufe'matrices 1n.f1xed order
often results in Terminal Condition (2). This terminal c¢ondition can
be avoided by using Mode (c), but even with Node (c¢) the possibility
of Terminal Condition (3) has not been ruled out. Even though this .
algorithm is not guaranteed to achieve a set of features producing a
minimum value of E, the use of Mode (a) has generally led to results

that were consistent and difficult to improve further.

The results of experimental tests of this algorithm were reported

previouslyB and are only briefly summarized here. - A set of eighty
’ patterns, each in the torm of a solid triangle or the degenerate remnant

. of Buch a figure on a- 5-by-5 retina, were split 1nto two sets, a set of
forty training patterns ‘and a set’ of forty telting patternl. Cpmposition

S s LADTD A Ria o 9L vy UL Ul ovitieasr o
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and feature matrices were determined for the training patterns by using
the exhaustive iterative ilzorithm [Mode (a)] for twenty iterations.
The features thus determined were then used t6 reconstitute the testing
patterns; the composition matrix for these patterns was determined by

the same iterative adjustment method.

The results obtained depended upon the value chosen foi the parameter
K, the number of features. For K = 6, 9, and 13, the following sverage

nuzber of errors per pattern were obtained:

Average Training Average Testing

_5 Set Errors Set Errors
6 2.25 3.05
9 1.63 2.60

12 1.08 2.03

These errors were reasonably evenly distributed over the patterns,
8o that the numbers given can be considered to be representative of the
number of errors encountered in reconstituting any one pattern. On

this basis, the results obtained seemed to be promising.

However, with patterns on such & small retina it is difficult to
draw firm conclusions about the quality of reconstitution. The amount
of computation time required by the exhaustive iterative algorithm is
roughly proportional to lez, and is prohibitively long for experiments
using appreciably larger retinas. Thus a conclusive evaluation of the
usefulness of feature detection for bandwidth compression can not be
done without a fasfer algorithm. The following section of this report
déaﬁribes other algorithms that were investigated in the hope of finding
one that would give comparable performance without being effectively
limited to small retinas.

H
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‘ . - III EXPERIMENTS WITH OTHER ALGORITHMS

The three different algorithms that were investigated were tested

on three different sets of patterns. The digital computer programs

developed for these experiments were carefully.tailored to provide

maximum efficiency. The algorithms themselves are described first,

followed by a description of the patterns, and a comparison and evalua-

tion of the resultq qt the gxperiments. 5 dilcuzoign o:‘ppecial features

.0of the cqmputer programs is given in Appendix At‘ A datailgdlliqtiqg and
o explanation of the qupqtgr‘rﬁqq is given {nZAﬁ?gpdif B. ".1 B ;

A. THE ALGORITHMS

1. Intersections and Unions of Patterns - n l_7?'

'

Elements common to a pair of patterns constitute the inter-
section of the pair and may be selected by performing a logical AND
"operation between corresponding elements of the two patterns. Elements
‘ included in one or both of a pair of patterns constitute the union of
‘ the pair and may be selected by performing a logical OR operation be-

twean corresponding elements of the two patterns.

In the B5000 computer, up to 47 binary elements can be
- accommodated in a single computer word, and the logical operators AND
. -and OR perform their operations on all bits of a pair of words in
- parallel.. Thus the intersection or union of two patterns of 47 bits
- or less, or 0f 47-bit areas of two larger patterns, can be accomplished

in a single logical operation.

:Experiments on the B35000 were conducted using 25~ and 35-bit
patterns, each pattern occupying a single computer word. :Although de~
tails varied from experiment to experiment, the essential operations
werehgenerally as follows: Certaln patterns of the training set were

L;deaitnated as tentative features. The remaining patterns were tested

a8 to the absolute and relative sizes of their intersections with the

a
tentative features. Generally, each of the remaining patterns was

11
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combined with that tgntntive feature with which it made the largest
intersection. If that intersection was larger tﬁih’t'critical size
.. {an arbitraty parameter), the tentative feature was replaced by the
intersection, which was then the tentative feature for the next round
of tests.' If the maximum intersection made by a given pattern was
smaller than the critical size, the tentative feature was replaced by.
' its union with the pattern.: Bach pattern of the training set was
"~utilisged at least once in arriving :at the final .set 'of features. -

b

" Various schemes were tried for selecting the initial tenta=~
" tive features, and a wide range of size parameters was irvestigated.
In one form, the algorithmrdeferminéd the number ‘of features as well

" as their structures,. A

2. Simplified Iterative Algorithm

o ‘In. thé exhaustive iterative algorithm described in Sec. II,
each element of the feature matrix and each element of the composition
‘matrix was examined in turn end assigned- that value which minimized the
total error 'in reconstruction of the pattern set. This process was
repeated until theﬁfotal error stabilized at a minimum value. This
procbdﬁre was slow, mainly because of the many times the patterns were

reconst;ucted.gnﬁ errors computed.

Several experiments were run on a Qi-pler iterative technique
that does not require repeated error evaluation, Arbitrarily formulated
"initial features were assighed in the éqmponition matrix to the recon=
- struction of those patterns of the training set which 1nc1uded;nore than
a certain fraction (an arbitrary parameter) of the feature olcments.:\"
" Then the features were modified, ¢lement byvelemehy, 1ntroduciﬁg or e
retaining only thosg‘elementa that occurred ig_nor# than a ¢iven frac-

tion (an arbitrary parameter) of the patterns to which that feature
’ was assigned in‘fho gonpq:itiqn_qat;ix.} ?biq process vas,:epdataq

seyeral times, first modifying the composition matrix and then modifying
the fesatures... . . _ .

N 2 N S A AL b e M P S
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This algorithm was tested with several sets of initial features

and a number of choices of the arbitrary parameter, -

3. The Sequential Algorithm

'This techniquerfor feature detetmination is described in
detail in Ref. 1 (copies of this paper have been forwarded to JPL in

connection vith this project) The essential operations are as follows:

EBach tentative feature is initiated as a filled retina. Sizes
of intersections with successive patterns (arhitrary order) are measured.
If the size equals,or.eiceeda a certain measure, the intersection be-
comes the tentatiye feature. When all of the patterns in the input set
 have been considered, one feature has been determined in its final form.

Repetition of the same process determines additional features.

This process would generate a number of identical feetures
except that the measure used for comparison is equal to the sum of a
fixed parameter (arbitrary) and the sum of the retinal elements in the
union of all previously deterﬁined features that would be totally con~
tained in the modified tentative feature. Thus thefneasure changes;

and successive passes through the pattern set produce distinct features.

After a number of features have been determined, point will
be reached vhere a complete pass through the pattern set will permit no
modification or the full-retina tentative feature. Thus this algorithm

Ldeterminel the number as well as the form of the features.

This algorithm was tested with several types of pattern sets

and a nunber of choices of the arbitrary parameter.
" THE PATTERNS - - ' ..0 o~ R ST SR N

Any approach to bandwidth compression must exploit, explicitly or
implicitly, some statistieal property or propertiel of the message set.
If all possible patternn-on a given~-sized retina were equally probable
and full resolution were required in their transmission, no bandwidth
7 compression would be possible.' The basic assumption of the feature
detection and utilization’ approach to bandwidth’' ocompression:is that' -

13
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patterns of significance to the user at the receiving end of the trans-~
mission system form a limited subset with certain common character-

istics.

Three distinctly different pattern sets were used for testing the

several algorithms for feature detection. There are, of course, a

great many statistical measures which could be evaluated for the pattern

.sets. The duestion of statistics was not pursued in depth, however,

and only the simplest of statistical computations was perfbfmed. This
consisted of counting the frequencies of occurrence of the retinal

elements for each set and the frequencies of element pairs (digram

‘' frequencies). Although no quantitative conclusions have been drawn from

these statistics, they provide some 1nsight useful in the interpretation

AR T S i o

of some of the feature-detection results.

1, Triangular Pattern Set

This is fhe set of 801paftérhs utiiized in the expér;ments
described in Ref. 5 (and repioduced in Figs. 1 and.2 of that report).
They were constructed according to a rigid rule and exhibit a high de-
gree of regularity. Ench pattern 1: a solid triangle or the degenerate

remnant of such a figure.

The patterns were constructed by considering each element oi
the‘5-by—5 retina as the apex of four right triangles, with bases up,
down, righf, and left. Each of thé four solid‘triangleé was considered
as a pattern, eveh if the apex lay at an edﬁe df fhe retina and only a
single element was retained. One hundred such patterns may be iden-~
tified, twenty of which are redundant, leaving a total of 80 distinct
patterns. The number of elgments per pattern varies over a wide range.
Sixteen patterns consist of single elements on the retinal perimeter;

four contain three elements each twelve contain four elements each,

' etc. The largest patternn are eight of 18 elementl and four of 19

elements.

. amcng element frequencies in the trianguler pattern

sot are small.. - The array of element frequencies. (Table 1) is completely

14
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synmetric, reflecting the symmetry of the rule’.by which the, patterns
were constructed. S ; e
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The digram frequencies are seen to decrease rather monoton-
ously with distance between pairs of elements. There are no surprises
in the statistics.

The triangular patterns are low-detail figures which could
be tranbmitted without serious loss of information by low-resolution
analog techniques. They appear to be essentially featureless, in the

sense that their statistics are smooth and uninteresting.

An approximation to simple resolution reduction was tested
with this pattern set. Nine non-o&érl@pping features, consisting of
;,i : clusters of three retinal 9}eneﬁtsJeach,except for a lone central

element, were assigned to reconstruction of the patterns. The features

were:

- O T T I U
xxll. '..xx * 0 80 L Y LI B B ) ..x.. " e 0 e * 5 0 0o 0 LI B A )
. . - to ; . -I . . .

Xeoeoo v0eeX “tadee haawe TeXedd i eXXe' sieee veeen ueaes

LRI B 3 oo..‘q,,3.....,‘.-..,;.XX....: “e v de ‘-ooxx ve e ‘ioono- yi.

P - e e a e L S B ) ....x thlﬁ o e 8 00 '...4' ...x. 'xx.. « o9 0
‘ Loob P e S > O

These triangular clusters are as close an approximation as can be made
on this small retina to a simple reduction of resolution by a factor of
about three. : The features were not modified in this experiment but

simply assigned to the reconstruction of the patterns so as to minimize

e o the totalfétrors for the training and testing sets., The errors optained
y ' were: , . - : _ o (?
1'1 - S " N T : ~ KR
Training Set Errors -.Testing Set Errors ..
, Total Average Total Average
* ! I : 5 vl A .
76 1.90 88 2.20

Since there was no training, the difference between the results for the
two sets 1s'pure1y~due to the arbitrary div;sion of the 80 patterns in-
to twO‘gréﬁﬁsa The average error per pattern is 2.05 elements, resulting
- from 8 patterns with zero :error, 16 with one error, 20:with two errors,
. and 36 with three errors,
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2. Alphanumeric Pattern Set

To be useful, a feature-detection algorithm should provide
reasonable performance on different types of pattern sets. To test
the various tentative algorithms on patterns composed of line segments
and t0o avoid the regularity of patterns contrived by the operation of
rigid rules, we selected a set of alphanumeric characters designed on
a 5-by-7 matrix for use with electrical and mechanical'printers. The
set consisted of 35 characters (A through 2, all capitals, and 1 through
9) as produced by the print wheels on the IBM keypunch.

Element frequencies (Table III) showed wide variation in the
alphanumeric pattern set, and there appears to be little symmetry to
the distribution. ’ fe ) -

¥l . Ao Lt v . ¢ o A : N ’ ot

Table III

o ; ELFMEN?iFREQUENCIES--ALPHANUMERIC PATTERNS . (35)

e 20 19 23 21 17

24 7 4 3 23
N G e 21 7 7 .6 18
18 13 20 13 13
20 8 10 5 18
25 4 5 6 18
16 20 23 18 14

The main feature apparent in. the element-frequency array is
the concentration of large numbers around the perimeter and horizontally

acrosubthe‘center Qf the retinq.

b Digram statistice of the alphanumeric patterns show some long-
range correlations and interestingly low short-range correlations in
some directions. A few of the’'diagram arrays (Table IV) will illustrate
this. . N . £l X i . R

% i : “ : S0 ‘ ! L w1
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.13
11
11
14

14

10
14
12
10
12
15
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DIGRAM FREQUENCIES--ALPHANUMERIC PATTERNS (35)
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By contrast with the digram statistics of the triangular
pattern set, these arrays show wide variations and frequent irregu-
larities. Although the success of feature detectién and utilization
for bandwidth reduction will depend on higher-order statistics, this
statistical behavior at least indicateslsomeWhat greater promise for

success than that of the triangular patterns.

Use of the alphanumeric patterns provided some additional in~
sight into the prcblem of error critéria. - In particular, many of the
patterns could not be recognized unambiguously although reconstructed
with few elements in error, whereas others were recognizeable although
perturbed by many errors. Twelve of the 35 characters differ from some
other character of the set by only three retinal elements. One, the
numeral 4, differs by at least 16 elementsAfrom all of the other
characters. ' Thus if character recognition were intendgd, the simple
error ériteriop employed in'these experimeﬁts would be totally 1n;fJ

adequate.

3. Seven-Feature Pattern Set

A third pattern set used in the evaluation of feature-
detection algorithms was previously employed in experiments reported
by Block, Nilsson, and Duda.* (Figure 14 of Ref. 1 illustrates the
complete set.) Constructed on a 5~by-5 retina, the set consists of
22 distinct patterns and two repeats, for a total of 24 patterns. All
the patterns can be constructed from some combination of seven features,

the simplest feature set being the following:

‘ KXXXX  soves ssese Xeves 22Xus oeseX 22X

. et sev e voeas Xeoeoo coXoo eeeeX «ooeXo
ceree . JXXX. ceree Xeses seXos  eessX L oX..
Ceeer seses anens Xuees eeXes esesX  Xe..
teeee seses XXKXXX Xeses soXes seseX Xeoeos

The measured statistics of these patterns are shown in Tables V and VI.
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14 8 .9 8 13 7 6 6 6 17 17 13 16 13 18
14 0 2 2 9 6 0 0 0 5 10 0 7.6 9
14 6 10..6 9 _ .6 II 7.1 5. 10 7 fis] 7 9.
14 2 0 9 6 0 0 0 5 . 10 6 7 0 9
14 8 9 .8 12 7 4. 4 .4 6. 17. 9 13 9 13

Et Cetera-- . ..,

Some of the features appear prominently in the digram arrays.
When the reference element in a digram array occurs only in a single
feature, all elements of that feature exhibit the maximum value for
the array. Other elements which also exhibit this maximum value may
be included in that feature, since they always occur with the other
elements in the pattern set. This situation occurs in the ninth digram
array, where the right-hand column and the lower left-hand corner dis-
play the value 12, and also in the eleventh array, where the three-
element central horizontal bar and three corner elements display the.
va}ue l. Thus from these simple statistics we can see that the feature

set is not unique.
C. COMPARISON AND EVALUATION OF PROMISING ALGORITHMS

- Each of the techniques for feature detection was tested in several

‘modified forms and usually with a range of values for each of the

arbitrary parameters involved. About 70 runs were made on the B5000

computer, and many of these tested more than one technique or several
*

values of some parameter. . Some procedures were common to all or most

of the runs, and the general order of business was as follows:

[

. A Co v o
A detailed listing and explanation of the .computer.runs is given in
Appendix B.
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A pattern set was read into memory. In some cases, this pattern
set was treated as two subsets, a training set and a testing set. Each
pattern may be considered as a 5-by-5 or 5-by-7 binary array, although
stored as a single word in the computer. A block of memory was set
aside for the features to be determined. Each feature is essentially
a pattern on the same retinal array as the input patterns. 1In some
cases, a set of initial features was loaded in the input process; in
other cases, the feature set was initially empty. Another block of
‘memory was reserved for the composition matrix, which may be considered
as a rectangular array with one dimension equal to the number of features
and the other dimension equal to the total number of patterns (training
and testing). A binary 1 occupying the element corresponding to a given
feature and a given pattern assigns that feature to the reconstruction
of that pattern. The reconstructed pattern is then the union of all
features so designated-in the composition matrix. The composition
matrix could be loaded with tentative values at input, or considered

initially empty.

Various printouts were provided during performance of some of the
feature-detection algorithms, so that details of the process cduld be
reconstructed and analyzed. In other cases, only the final result was
printed. In iterative techniques that determined features and composi-
tion matrix together, pattern errors were printed out at each iteration

8o that the trend toward or away from convergence could be examined.

Following the performance of algorithms that produced features
alone, the composition matrix was determined by performing several
iterations of the procedure used for modification of the composition

matrix {in the exhaustive iterative algorithm as described in Sec. II.

In each experiment, pattern errors were evaluated by comparing
the reconstructed patterns with their input counterparts, and totalling
errors for the set. If there was a subset of testing patterns, the
above procedures for determining the composition matrix and errors were

always employed for this set. ' : RN s . g .xx{ .

ot
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Since the exhaustive iterative algorithm described in Sec. II
served as a standard of comparison, one evaluation technique which was
frequently employed consisted of running this algorithm in tandem with
the scheme being evaluated. The features produced by the algorithm
under test were used as initial features for the iterative procedures,

and the disparity between the error figures obtained with the initial

and final sets of features was considered as the margin for possible

improvement.

In most cases, printout included the input patterns, features, and
compositionbmatrix (unless empty), features produced by the algorithm
under test, final composition matrix, and reconstructedvpatterns with
a tabulation of errors, together with whatever special information was

produced during the feature-detection process.

As a standard for comparison, the exhaustive iterative algorithm
appears to give fairly consistent results, although absolute minimum
errors are not guaranteed by this technique. The following sets of
results were obtained on the Triangular Patterns when the exhaustive

iterative algorithm was asked to find nine features:

:nv;; .~ Training Set Errors © .Testing Set Errors
, Total Average Total Average
(a).::. 66 1,65 104 : 2.60

(b) i 66 1.65 86 2.15

(c) . 65 1.63 88 2,20

Results (g) were obtained on the IBM 7090 and in Run 21 on the B5000

using the same set of arbitrarily constructed initial features and the
*
same arbitrary initial composition matrix. Results (b) were obtained

in Run 24 using a set of three-element clusters as initial features,

LY tiwy 1 o
B (ST

y

* ' ' L I . D 2 SR
The computer runs are listed in Appendix B.
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with the composition matrix initially empty. Results (c) were obtained
in Runs 35 and SRI 4 and's, which employed one of the "intersections and

unions' algorithms to produce a set of initial features.

Performance on the training set is seen to be quite consistent,
although it is evident that the features determined depend somewhat
on the initial set. The primary objective of the work herein reported
was to develop an algorithm which would approach this error performance

with much less computation.

Operating on the Alphanumeric Pattern'Set, the exhaustive iterative
algorithm produced the following results: ' - o

'~ Features ' Pattern Set Errors

' Total Average
(a) -8 o 136 - 3.89
(b) 8 1562 4.34
(c) - 8 155 ~ 4.43
(@) 9 144 . 4,11

These results were obtained from initial features produced by
different versions of the ''intersections and unions' algorithm, Runs
39, 40, and 41, and SRI 4 and 5. Nine features were found in (d), as
compared with eight in the others, so that one would expect a lower
minimum error for this case. Scatter of the results implies that

further experimentation might well yield lower minima.

Operating on the Seven-Feature Pattern Set, the exhaustive iterative
algorithm failed to yield seven features that would reduce the error to
zero, Initial features, derived from one of the "intersections and
unions” techniques, yielded errors of 36 bits total, or 1.50 bits per
pattern on the average. The exhaustive iterative algorithm reduced
this error to 17 bits total, or 0.71 bit average, but could do no better,
The initial features were distinct and reasonable, providihg no éa:y )
explanation for the failure to go all the way to the known minimum

v .\

possible error, namely zero.
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1. Intersections and Unions of Patterns

Techniques utilizing intersections and unions of patterns to
determine features evolved through many modifications. Initial effort
was devoted to tests utilizing the Triangular patterns., A totally
random scheme for selecting patterns as tentative features and then
modifying them by intersections (1f larger than an arbitrary size) or
unions with randomly selected members of the training pattern set yielded
large errors, The scheme was then modified to select the first few
patterns as tentative features and combine them with those patterns
with whicﬁ they had the most elements in common. The best results with
the Triangular patterns were obtained using the largest patterns as
tentative features and combining them with the remaining patterns with

which they made the largest intersections.

Multiple runs Were made to determine the optimum value for the
arbitrary parameter determining whether an intersection or union would
be taken between a tentative feature and the pattern with which it
shared the most elements. S8ix, nine, and twelve features were deter-
mined in these runs, in the hope of establishing an empirical relation-
ship for determining the size parameter. In the following tabulation,
values in parentheses are minimum errors produced by the exhaustive -

iterative algorithm, included here for comparison

Featurel‘:r'81ze Parameter Training Set Errors Testing Set Errors
e . Totalﬁ Average Total Average

6 6 111 2.77 130 3.25
A L (90) - (2.25) - (122)- (3.05)

9o a 78 1.90 113 2.83
(65) (1.63) (88) (2.20)

12 0 3 <74 7 1,85 80 2,25
43)  (L.08)  (81) (2.03)

The product of the number of features and the optimum size
parameter, as determined by these data, i8 36 in each case, leading to

a tentative relationship: F-S.= (x+ 1):(y + 1), where F is the number
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of features, S is the size parameter, x and y are the linear dimensions

of the retina.

After selection of thé tentative features, the rest of the.
patterns were considered in the order in which they were read into
memory. Six runs were made to check sensitivity to order of input,
with the data cards (one per pattern) shuffled between runs. Mean

errors and root-mean-~square deviations for these 8ix runs were:

 Training Set Errors Testing Set Errors

,Total _ Average ' Total Average
Means - 82.83 o, 2,07 - . -113.33 2.83
RMS Deviation 3.98. 0.10 8.44 0.20

Thus for this pattern set, the order of the patterns is not very im-

portant.

This algorithm was not very successful with the Alphanumeric
or Seven-Feature pattern sets. In the following, the numbers in
parentheses are the errors resulting after employing the exhaustive
iterative algorithm in tandem with the feature-detection algorithm . .

under examination:

Pattern Set Features Pattern Set Errors
Total Average

‘ Alphanumeric 9 183 5.23
(144) (4.11)

Seven~Feature 7 36 1,50

(17) (0.71)

Numerous modifications to this algorithm were made in the
course of experiments with the Alphanumeric Pattern Set. It appeared
that the large patterns selected as tentative features might be too

similar to provide the best starting set, so various techniques were

" employed to prevent patterns”with too much overlap from being selected

a8 initial tentative featuresll The most successful of these eliminated

26
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. a pattern from consideration as a tentative feature if more than three-
quarters of its elements were included in any previously-chosen tentative
feature. The number of tentative features which had been chosen when

the pattern set was exhausted became the number of final features de-

- termined.

. . .

Although exhibiting improved performance with the Alphanumeric
patterns, this version of the algorithm failed. completely with the other
pattern sets, as the following data show: -

R SA RS T R . R i Lo LT,

Pattern Set. . - Features ~ Pattern Set Errors
. Total _  Average
Alphanumeric 8 167 _ 4.77
(136) - (3.89)

Triangular  ..-/- ). 2" = 225 :' .-, 5.63 (Training)

v _ 226 _ 5.65 (Testing)
. Seven-Feature 2 . 172 o 7.17

. Failure to perform with the Triangular and Seven-Feature

pattern sets is simply due to the fact that a combination of two
patterns, in each case, included all or nearly all of the elements
contained in all of the other patterns of the set. Clearly, this
approach to improvement of the algorithm, while reducing errors for

one pattern set, was of no general value.

As instrumented on the B5000, unions and intersections of
patterns can be performed quickly, and hence, cheaply. Error evalua-
tion was not involved in the process of determining features, so that
this somewhat time-consuming operation was required only for final
evaluation. Run time for tﬁese algorithms was much less than with any

of the iterative techniques.

‘3. Bimplified Iterative Algorithm

" This technique, described in general terms in Sec. III-A-2,
vas 1h§estigated using the Triangular Pattern Set and two sets of
ter runs (Runs 47, 48, 49, 50) explored

¢ ‘

initial features. Four compu

‘ | | o | |
. P . . ' [N ' el
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a wide range of parameter values, Runs utilizing the cluster set of
initial features consistently diverged; i.e., errors increased with
successive iterations. 1In all but one case, duplicate features were
produced. The number of distinct features vafied from three to six,
although nine initial features were employed. In none of these experi-

ments could the technique be said to converge.

Failure of this technique may be ascribed to the fact that
each feature is considered independently of all others and evolved from
identical operations utilizing the same pattern set. There is no
mechanism to guarantee a diversity of features which would cooperate

for optimum reconstruction of the patterns.

3. The Sequential Algorithm

= This technique, discussed in Sec. III-A-3, was investigated
with all three pattern sets. The parameter determining minimum feature
size was varied from unity to five or six, This algorithm determines
the number of features, so that only an upper limit on this number was

entered into the system initially.

Performance on the Seven-Feature Pattern Set was as follows:

/Si?e Paremeter Features Pattern Set Errors
’ Total Average
1 14 0 0.00
2 14 15 0.83
3 14 18 0.75
4 10 31 1.29
5 6 43 1.79 ’

In the first case, seven features adequate for complete reconstruction
of the patterns were found, along with an equal number of redundant
fragments., It was disappointing that, as the size parameter was in-
creased, the features determined would no longer provide eircr—free
reconstruction, since 1t is known for this set that seven features

none smaller than five elements, will suffice for perfect reconstruction
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With the Triangular patterns, a value of unity for the size
parameter produced 25 single-element '"'features''--the 25 retinal elements.
With the size parameter as large as six, eleven features were being de-
termined, and the error rate exceeded that of other techniques for nine

features.

An upper limit of 20 features was used in experiments with the
Alphanumeric Pattern Set, and with the minimum feature-size parameter as

large as five, 20 features were being determined.

Features found by this algorithm tended to be equal in size
L
or only slightly larger than the minimum size parameter. This tendency
apparently resulted in the determination of a number of feature frag-

ments which were redundant in the reconstruction process.
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IV CONCLUSIONS

The basic premise upon which this investigation was based was the
following: the pictures of interest to the recipients can be adequately
.approximated by the superposition of certain patterns called features,
the number of features being significantly smaller than the number of
retinal cells. If this premise is valid, its exploitation for bandwidth
compression requires a practical procedure for determining suitable
features from a representative set of patterns, and for detecting their
presence or absence in any given pattern. Accordingly, this study was

devoted to finding and evaluating such procedures.

- The results of this research were largely negative. Although the
-;experiments performed were limitgd to patterns on very small retinas,
making it difficult to draw firm conclusions about the quality of per-

formance, the following observations can be made:

- {1): The only algorithm found that achieved uniformly -~ ....7 - ¢
-~ good results on a variety of pattern sets was the
7T cilod t'exhaustive iterative algorithm. However, even this
algorithm did not always determine a minimum-error
feature set; for example, different limiting errors . - --
~were obtained when different initial features were

~used.

(2) The amount of computation required by the exhaustive
" f .. "{iterative algorithm limits its use to small retinas. g
Simpler algorithms, investigated in the hope of cenos
‘minimizing computation time, resulted in higher . T
error rates. None performed sufficiently well on

-, ,a variety of pattern sets_;o wgrrapt‘experiments

using large retinas,

4 {3) Of the simpler algorithms studied, two techniques: PR

- based on taking intersections and/or unions of the
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training patterns might merit further investigation
for specific applications. Each would require
modification and specialization to the application
at hand.

These results neither prove nor disprove the premise that feature
detection 18 a potentially useful bandwidth-compression technique. How-
ever, none of the algorithms proposed for feature determination was
found satisfactory. Moreover, the results give little indication of
how better algorithms might be developed. In the absence of such in-

formation, it is recommehded that the study of feature detection for

bandwidth compression be terminated.

In conclusion, the authors would like to make some observations
which afe.not directly related to the results of this investigation, but
which nevertheless seem pertinent to this study. Television or facsimile
transmission of monochrome pictures generally treats each resolvable
element of each and every picture as an independent brightness element.
Any hope for compression of the bandwidth-time-power product in the
transmission of a series of such pictures must be based on some hypo-
thesized or established property (or properties) of the input pictures,
or on some restriction on the information required at the receiving

station. -

In television transmission, if successive frames are highly
correlated and if precise reproduction of individual frames is not re-
quired, frame-to-frame redundancy may be exploited for bandwidth com-
pression. This is essentially a time-bandwidth trade-off. Such tech-
nigues might be useful for real-time monitoring of soft landings or
remote guidance of slowly moving vehicles. Instrumentation may be ex-

pected to be quite complex.

Where individual frames are not highly correlated, as in the case
of programmed snap-shot photography from a'fast-moving vehicle, each
picture must be considered iandependently. .The possibility of bandwidth

compression "in such cases depends not so much on the nature of an
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individual picture as on the statistics of the ensemble of possible

pictures and the degree of detail important to the recipient.

At one extreme lies the case where all possible patterms obtained
with the full resolution capability of the camera are equally probable,
and all detail is of interest in analysis of the picture. Exploration
of unknown terrain, where a priori information is minimal, would appear
to be an example of this sort. In such cases there would appear to be
little hope for bandwidth cbmpression unless the recipient is willing
to settle for something less than full resolution, full gray scaie,vor

full picture area.

At the other extreme lies the case where thevinput pattern set is
limited to a relatively small number of patterns, ¢or the recipjent's re-
quirement for information is limited to pattern classifications. For
example, the transmission of alphanumeric patterns only requires trans-
mitting an identifying code word if pattern-recognition capability is
avallable at the transmitter. Whenever classification into a relatively
few categories supplies the required information, pattern recognition
offers an effective means of reducing bandwidth. Feature detection may

play a much more valuable role in such applications.1

Between the two extremes undoubtedly lie many cases of interest
in which either the input picture set is somehow restricted or the re-
cipient's information requirement is such that precise reproduction of
~the input picture is not required. Most probably, efficient transmission
will be achieved in most of these cases by employing specialized tech-
niques that depend on the specific restrictions on the input pattern set
or on the detailed nature of the information that is to be abstracted
from the transmitted signal. Techniques may range all the way from
simple reduction of resolution for low-detail pictures to sophisticated
schemes for pattern recognition. It is thus difficult to generalize
about the many bandwidth-compression possibilities applicable to special
circumstances. Their characteristics and their effectiveness will de-

pend on the speéificllof each 1nformation-tfahafef problem.
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The general problem is not being neglected, however., Considerable
motivation for pursuing more-or-less general approaches to bandwidth
compression stems from the intuitive notion that pictures that "make

sense'" must form a restricted set, that the great percentage of "all
 possible” pictures must be senseless noise patterns and, as such, should
not occur with great frequency when one looks at structures created by
the organized processes of man or nature.‘ This is an entirely reasonable
point of view. This premise leads to a search for properties that
differ significantly between pictures that ‘"make sense’” and those that
do not, propérties that can be measured, manipulated, and exploited for
transmisaion economy by available technology. This search has been under
way for a number of years and is still an active area of investigation.
“To date, limited success has been achieved, but results are well short

of the hopes of the investigators.

"Run-Length Coding"‘may be cited as an example of limited success
in finding a statistical parameter that can be exploited, fairly

| generally, for bandwidth compression in television or facsimile trans-

mission., Schreiber and Knapp? have demonstrated that for a wide range

of pictorial material the transmission of a black-and-white picture

(or the most significant digit of a PCM-coded half-tone picture) can

be achieved with a bandwidth compression of about four to one by trans-

mitting digitally-encoded run lengths (i.e., distances between black-

white or white-black transitions). This work was done in one dimension,

along scanning lines of a TV raster. Effort is under way to extend this

concept to two dimensions.

Run~-length coding exploits a particular statistical property of
pictures that ''make sense.'' The ensemble of "'all possible' pictures
may be considered as the output of a random—ndise generator spewing
out a stream of independent black and white picture elements. The
probability of a run of,suéceésive black Sr successive white elements
‘ in a TV line of specified length, as produced by fyis.random generator,
is a rapidiy-decreasing funqtian of fhs lengﬁh of ﬁhe run. Success of

run-length coding 18 direct evidence that in pictures with sufficient

34
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organization to be meaningful, the run-length distribution differs from
that of the random-element generator. It is this statistical difference

that makes possible a bandwidth saving.

Any solution to the general problem of bandwidth compression for
the transmission of pictures, where a reasonably-precise reproduction
of the input is required, must exploit some such statistical property,
either explicitly or implicitly. Since an endless number of statistical
measures can be invented, the hope remains that technigues can be found
for significant compression of the bandwidth-time-power product in the

transmission of pictures",

Whatever technigues become available in the future, certain basic
principles will always be true. These principles are central to the
solution of specific problems within the limitations of currently avail-
able technology as well as to an attack on the general problem. What-
ever the detailed technique applied, bandwidth economy in picture
transmission will be achieved most effectively by (1) making the best
possible use of all available a priori information, (2) transmitting
only that information required in the subsequent analysis of the pic-
tures, and (3) exploiting whatever statistical properties may be common

to the class of meaningful pictures.
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APPENDIX A

COMPUTER PROGRAMS FOR EXPERIMENTS ON
FEATURE DETERMINATION AND PATTERN RECONSTITUTION

Two features available through Extended Algol on the Burroughs
B5000 computer make this machine particularly attractive for the mani-
pulation of binary patterns. Partial word addressing permits the packing
of up to 47 logical vglues per computer word and provides the means for
modifying such words bit by bit. Logical operations on these words
operate on all bits in parallel, facilitating rapid construction of

intersections and unions of patterns.

The attractiveness of these features and the availability of free
time on the Stanford University machine during its checkout period pro-
vided impetus for the programming of a number of experiments on feature
determination and pattern reconstitution using the B5000. Efficiency
of the machine and its programming language were demonstrated early in
these experiments by running a problem which essentially duplicated a
previous problem programmed in Balgol and run on the IBM 7090. Although
the B5000 is basically slower than the 7090 by a factor of two or more,
a problem in which ZS-element patterns were manipulated as single words
in the Burroughs machine ran in about one-sixth the time required by
the 7090.

Extended Algol on the Burroughs B5000 proved to be a very con-
venient and flexible language for programming these experiments. All
of the runs reported were made within the framework of a single basic
program. Quantities which varied from experiment to experiment, such as
retinal size (25 or 35 elements), numbers of patterns in the training
and testing sets, number of features to be sought, and the numbers of
iterations to be performed, were entered &8s data from a single card at
the'head of ‘the data deck. These data established array sizes and

controlled all repetitive operations, utilizing the computer efficiently

o ST oo Coe e

3%



REORDR N 2/ - 2

for either large or small problems. With the dynamic storage allocation
of the B5000, several dd'ta decks could be stacked to execute separate
experiments in a single run, and each experiment would run as efficiently

as if separately programmed.

One-dimensionAI arrays of computer words served as two-dimensional
arrays of binary elements for storage of input and reconstructed patterns,
features, composition matrix, and an error matfix. A single input pro-
cedure served to read‘these data (one pattern, féatu}e, or matrix row
‘ per card) and pack the elements into computer words. Another procedure
reversed this proceas'hnd'printed out the patterns, featurés, or mairices

as iequired.

Operations which were repeated on demand by the various algorithms,
such as pattern reconstruction, error evaluation, summing of columns or
rows of the various matrices, etc., were written as separate procedures.
 Since some of these procedures were called as many as 20,000 times in a
given experiment (exhaustive iterative algorithm), they were written to
achieve as efficient execution as possible. The library of such pro-
cedures may be viewed as a sub-language in which the various algorithms
were programmed. For instance, the single word "RECON" would call a
‘procedure which reconstrucied the Ith pattern, and the one-word state-
‘ment "ERROR(1,M)" would reconstruct the first M patterns (using "RECON"),
compare them with their input patterns, and compute, store, and print

out the pattern errors.

Programming of the feature-detection algorithms was simplified and
shortened by the use of this sub-language of often-repeated procedures.
The final technique programmed, for instance, the "Sequential Algorithm,"
required the keypunching of only 22 additionai cards to be inserted in-
to the master deck. As a consequence, results of the first experiment
on this algorithm were available on the day following the decision to

program it.

The several algorithms were written as procedures which could be
added to or removed from'the‘yasic program deck as desired. Thus,

setting up an experiment iavolved selecting the procedures to be used,
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arranging the appropriate set of procedure call cards, and assembling
one or more data decks. It was a simple matter to find a set of
features by one of the simpler algorithms, assess their performance
in reconstructing the pattern set, and then employ them as initial
features with the exhaustive iterative algorithm, all in a single

experiment.

Multiple experiments in which several values of a parameter were
employed in a given algorithm, with the same input patterns, were
accomplished by short loops around those procedure calls required to
repeat the algorithm and evaluate its performance. Runs involving
different pattern sets employed a loop around the whole program so

that arrays of the proper sizes could be redefined.
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APPENDIX B

SUMMARY OF COMPUTER RUNS

The computer runs are summarized in Table B-~I. Information in the

table is amplified in the succeeding pages.

Run numbers were assigned chronclogically. Some runs are reported
out of their chronological order in the following summary, where the
information they provided was closely related to or helped to interpret

runs made at an earlier time.

a. IBM 7090 Runs - Exhaustive Iterative Algorithm

Completed in the first half of this project, these runs served

as the impetus and take-off point for work in the second half.

The Triangular Pattern Set was utilized in all of these
experiments, divided into two subsets of 40 patterns each. An arbitrary
set of features and a randomly-produced composition matrix were entered
as inputs. Composition matrix and features were iteratively modified,
element by element, using the rule that if the error were insensitive to

& given element, the value of that element was reversed.
€ Features

Training pattern errors, 90 bits total, 2.25 bits average
Testing pattern errors, 122 bits total, 3.05 bits average

9 Features

Training pattern errors, 66 bits total, 1.65 bits average

Testing pattern errors, 104 bits total, 2.60 bits average
12 Peatures

Training pattern errors, 43 bits total, 1.08 bits average

Testing pattern errors, 81 bits total, 2.03 bits average.
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RE-ORDER No. /- /- -

b. B5S000 Runs - Checkout of Programming Techniques

Run 9 -- Checkout patterns. Demonstrated procedures for

packing the patterns into words, reconstructing patterns from features,

and printing out the patterns (one-line-per-pattern format).

Run 13 -- Checkout patterns. Demonsﬁrated procedure for

modification of the composition matrix.

Run 16 -- Checkout patterns. Full program utilizing both

composition‘natrix and feature modification in training set, followed
by composition matrix modification only for testing set. Status quo
maintained if error not reduced by altering a composition-matrix element
or feature element. Failed to produce perfect reconstitution. (N.B;
Checkout patterns (14) made dp of fhree vertical and'three horizontal

bars. 8Six features adequate for perfect reconstitution.)

Run 22 -- Checkout patterns. Same as Run 16 except that where

the error was insensitive to a given matrix or feature element, that
element was included on odd~numbered iterations. Produced perfect
reconstruction of both training and testing patterns. (Eight training
and six testing.)

" Run 20 -- Checkout patterns., Same as Runs 16 and 22 except

that where the error was insensitive to a given matrix or feature
element, that element was included if previously omitted or omitted if
previously included. Produced perfect reconstruction of both training

and testing patterns.

c. B5000 Runs - Exhaustive Iterative Algorithm

Run 17 -- Triangular'Pltterns, Nilsson's initial features and

composition matrix. Iterative modification of composition

matrix and feastures for training set. Iterative modification of compo-
sition matrix only for testing set. If arror 1nsensitive to an element
of compsition matrix oxr feature, thnt element was left unchanged.

LFM A

e

Training pattern errors, 126 bita total 3.15 bits average

Tosting pattern errors, 175 bits total, ' 4.38 bits average
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Results using this rule are clearly inferior to those obtained for nine

features in the 7090 runs.

Run 23 -- Triangular Patterns, etc., as in Run 17. Except

that where the error was insensitive to a given elemen;, that element
was included on odd-numbered iterations and omitted on even-numbered

iterations.

"Q‘Features .
Training pattern errors, 77 bits total, 1.93 bits average
Testing pattern errors, 116 bits total, 2.90 bits average
Results’much better than given by "status quo” rule (#17) but still
inferior fo those obtained in the‘7090 run. o '

Run 21 -- Triangular Patterns, etc., as in Runs 17 and 23,

Except that where the error was insensitive to & given element, its
value was changed. This 1s the same algorithm and the same rule used

in the 7090.run.
9 Features

Training pattern errors, 66 bits total, 1.65 bits average

Testing pattern errors, 104 bits total, 2.60 bits average
Final results identical with those obtained on the 7090. 1Initial features
averaged 7.22 elements per feature; final features averaged 6.0 elements

per feature. Minimum error for training set achieved on 10th iteration.

Run time on B5000 was about 5 minutes, as compared with 30 minutes on

the 7090.

During all subsequent runs, the rule used for modification of the
composition matrix and feature elements was to change the values of

. those elements to which the error was insensitive.

Run 24 -~ Triangular Patterns, Cluster feature input. Compo-

sition matrix initially empty. Initial features were three-element
clustera, S0 that nine covered the retina with only two elements of
overlap. Composition matrix and features modified iteratively for

training set.

.

0n1y>composit1qn matrix mod;tiéd for testing set,

t
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9 Features

Training pattern errors, 66 bits total, 1.65 bits average
Testing pattern errors, 86 bits total, 2.15 bits average
Total error on training set same as with Nilsson's initial featureé.
Errors on testing set considerably smaller. Initial features were all
three-element clusters; final features averaged 4.0 elements per
feature -- 2/3 as large as when starting with Nilsson's features.
Minimum error for training set achieved on 5th iteration -- half as
many iterations as required with random initial features and composition
matrix. There Qeré only 81 bits total erior for fhe training set on the

first iteration, before feature modification.

N.B. Cluster features are somewhat matched to the triangular
patterns, and their employment corresponds roughly to a reduction in
resolution. Smaller features appear to be favorable with regard to

" minimizing errors in the testing set.

Run 59 -- Triangular Patterns, Cluster Feature input. Compo-

sition matrix initia}ly empty. Features consisted of eight threeF‘
element clusters and one single element (center of 5 x 5 array) so

that there was no overlapping. The feature set was not modified.
: Composition matrix was determined by the algorithm previously used fcr
.modification. Since the features do not overlap, iteration would serve

no purpose.

9 Features

Errors in 1st 40 patterns, 76 bits total, 1.90 bits average

Errors in 2nd 40 patterns, 88 bits total, 2.20 bits average
The two sets of patterns were those identified as training and testing
patterns elsewhere, but since no training took place in this run, use
of those labels here would be misleading. Each pattern of each set is
treated independently in the same way; hence, the lower error achieved
.for the lst 40 patterns (training set) must be attributed. to chance in
the division of the arbitrarily ordered deck.

. L oo . o [ B SRP
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Lumping all 80 patterns together,
Errors in 80 patterns, 164 bits total, 2.05 bits average.

' Pattern errors were distributed as follows:
8 patterns had O error '
16 patterns had 1 error each

20 patterns had 2 errors each

36 patterns had 3 errors each

0 patterns had more than 3 errors;
The solid, triangular shapes of these patterns contain little structure;
fherefore, it is not surprising that simple reduction of resolution seems
to be about as effective a bandwidth-compression technique as more

sophisticated schemes for feature determination.

d. B5000 Runs -- Intersections and Unions of Patterns

Run 25 -- Triangular Patterns. This was an attempt to deter-

mine features by taking intersections and unions of patterns selected
in a pseudo-random manner. At least one third of the patterns in the
training set were involved in the determination of each of the nine
features. If the current size of the evolving feature was smsller than
a certain drbitrary parameter, union with the next selected pattern was

performed. If larger than this parameter, the intersection was taken.
9 Features

Training pattern errors 158 bits total, 3.95 bits average

Testing pattern errors 191 bits total, 4.77 bits average
Five of the nine features resulting from this process were identical
with five of the training patterns. The process obviously failed to

distill the common features from the set,

Run 27 -~ Triaqulnr Patterns. In this attempt to determine

.- features with a minimum of manipulation, the first nine training
patterns were tentatively assigned as features.. Each of the remaining
training patterns was tested against the nine tentative features and
combined with that feature with which it made the largest intersection.

If the intersection was larger than an arbitrary parameter, the
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intersection was taken; otherwise, the union was taken. Thus one feature
was modified each time a pattern was considered, and the modification was

performed before proceeding to consider the next pattern.
9 Features

Training pattern errors 98 bits total, 2.45 bits average

Testing pattern errors 128 bits totnl; 3.20 bits average
This procedure tends to modify the larger patterns selected as tentative
features but to leave the smaller tentative features intact. Five of
the resulting‘features were ldentical with the patterns used to initiate
them. The other four started as large patterns and were very much
modified. | | ;

Run 28 -- Triangular Patterns. Essentially the same as the

algorithm of Run 27 except that the largest 9 patterns were selected

as the tentative features. The remaining training patterns were then
tested against each of the tentative features at its particular stage
of evolution and combined with that one with which it had the maximum
number of common elements. If this intersection was }arger than the
arbitrary size parametef then the intersection became the new tentatiye
feature. If the intersection was equal to or smaller than the size
parameter, then the new feature was the union of the old feature and

the pattern being considered.
9 Features

Training pattern errors, 87 bits total, 2.18 bits average
Testing pattern errors, 119 bits total, 2.98 bits average
Starting with the largest patterns resulted in modification of all of
the initial assignments; however, fiVe of the nine resulting featureq'

)

were 1dent1ca1'with patterns of the training set.

These results were an improvement over previous attempts at feature
determination with a minimum of manipulation and led to a series of
runs aimed at ths empirical determination of scme sort of optimization

technique for the size parameter.
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‘ Runs 29, 30 -- Triangular Patterns. Parametric study to
determine optimum value of size parameter for 9 features. Same algorithm
as Run 28.

9 Features

Size Parameter Training Pattern Errors Testing Pattern Errors

(bits) . - (total bits -- average) (total bits - average)
3, .. 1w . 2,73 . ;. 113 2.83
4 76 1.90 113 2.83
5 79 1.98 106 2.65
6. ., ., . 8 .. 2.8 . . 119 . 2.98
7 87 2.18 119 2.98
8 99 2.48 © 128 3.20
9 103 . 2,58 . 139  3.48
12 112 2.80 154 3.85
15 140 3.50 176 4.40

The smallest error for the training set was achlieved with the size
parameter equal to 4. The average feature size for this case was 8.44
elements. Five of the features were identical with patterns of the

training set.

. The smallest average erfor for the combined pattern sets was achieved
with the size parameter equal to 5. The average feature size for this
case was 8.78 elements. Only one feature differed slightly from the

set derived for the size parameter equal to 4.

As a starting guess, it was assumed that feature size, and hence any
parameter relating to feature size, might well be a function of the
ratio of retinal elements (N = 25 here) to number of features (L = 9).
This ratio is here close to 3, so that N/L + 1 yields the size parameter

which gave the best result for the training set.

Runs 31, 33 -- Triangular Patterns. Parametric study to

determine optimum Qalue‘of‘size pafameter for 6‘features. Same algorithm

as Runs 28, 29, 30.

e
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. 6 Features

Size Parameter Training Pattern Errors Testing Pattern Errors
(total bits -=- average_ (total bits - aversge)

(bits)
I T 133 ‘ 3.30
3 . 144 3.60
4 , . .. 18 . 2.95 .
5 126 3.15
6 - 111 o 2.77
7 123 3.o8
8 126 3.15
e . . 1e ., 2.98
10 119 2.98 -
11 - . 122 : 3.05
12 ; 122 , 3.05

HEDORR N - <

168
179
131
126
130

138

157
139
140

152 -

152

4.20
4.48
3.27
3.15
3.25
3.45
3.93
3.48
3.50
3.80
3.80

Smallest error for training set and for the combined pattern sets was

achieved for a value of 6 for the size parameter.

was 9.00 elements. Only one feature was identical with an input pattemn.

Average feature size

In this case, N/L is about 4, so that the expression N/L + 2 yields the

size parameter which gave the best result.

‘ Runs 32, 34 -- Triangular Patterns. Parametric study to

! determine optimum value of size parameter for 12 features.

algorithm as Runs 28, 29, 30, 31, 33.

12 Features

Size Parameter Training Pattern Errors

‘- 7 .(bits) '’ ’-(total bits -- average)

3. 74 1.85
4 78 1.95
5 78 1.95
p 76 1.90

' O IR ‘1.90

8 - 106 2.65
o 98 2.4%
L1 % 2.40
11 96 - : 2.40
12 ' 96 2.40

Testing Pattern Errors
(total bits -~ average)

105
. 90
101
101
117
117
137
136
144

144

144

2.63

. 2.25

2.52
2.62
2.93
2.93
3.43
3.40
3.60
3.60
3.60

‘Smallest error for training set and for the combined pattern sets was

achieved with a value of 3 for the size parameter.

was 68.00 elements. Ten of the twelve features were identical with input

‘ patterns.
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In this case, N/L is about 2, so that the expression N/L + 1 yields the

size parameter which gave the best results,

For 6, 9, and 12 features, the product of the optimum size parameter and
the number of features is 36 = (5 + 1)2, where square 5§ X 5 patterns are
involved. This might generalize to an expression of the form

(X + 1) (Y + 1)/L for the size parameter, where X and Y are the linear
dimensions of the retina, but experiments with various sizes and shapes

of arrays would be required to substantiate it.

Run 35--Triangular Patterns. Using the same algorithm as

applied above, nine initial features were determined, with the size
parameter equal to 4., These features were then modified in the iterative
procedure used in the 7090 runs and on B5000 Run 21.  Both features and
.composition matrix were so modified for the training set; only the

composition matrix being evaluated and modified for the testing set.
9 Features

Training pattern errors, 65 bits total, 1.63 bits average
Testing pattern errors, 88 bits total, 2.20 bits average

Comparison with results of Run 21 indicates that the initial features as
determined here serve as a better starting point for modification than
Nilsson's randomly-generated initial features. Although the improvement
in the final result is only one bit in 40 patterns for the training set,
there is a 16Ab1f imﬂrovement for the 40-pattern testing set. The final
features obtained in this run average 4.89 elements per features, as

against 6.0 elements per feature when starting with the Nilsson features,

‘The final result here is very close to that obtained in Run 24, which
started with the cluster-type features. In that case, the total errors

were 66 and 86 bits for the training and testing sets, respectively.

Run 36--Triangular Patterns. The feature-determining

algorithm selects the largest patterns as tentative features and then
compares each of the remaining patterns with the feature set, combining

each with the feature with which it has the largest intersection. Each

N

56

50



RE-ORDER No. £ ¢/ 7+

pattern is utilized once in this process, either as an initial tentative
feature or combined by intersectiqn or union yith one of the tentative
features. Run 36 made provision for repeating the second part of this
algorithm a numbey of timea, i.e., again comparing each pattern of the

' training set with each ot the featurea and combining it with one sccord-
" ing to the same rulol. Each such revision utilized each pattern an
additional time. ST

8 Peatureg

novisto'a Training Patte:n Errors Testing Pattern Errors
Joi (total -bita -= average) . (total bits - average)

I T (- . L8 o, 13 . 8.83
1 83 2.08 103 2.53
B - 88 293 0 ‘v 2.53
3 #6 ©oR.13 RUISARN 2.532
4 . ag R.13 10} 2.52

8 R8T 2,313 7 e - 3.52
8 88 2.13 10} 2.52

Clearly, yevision did not improve the error for the training seg,
Revision Jed to alight reduyction in the average size af the features,
from B.44 elements withouyt revision to 7.44 elementa after the first
revision and to 7.32 elementa after the second and auyhsequent revisions.
The featwuyes were nat alteysd by the revision proceag after the aecond
revision.

Run 37‘::_Aighanumeric Patterns. The algarjthm initiated in
Run 28 and investigated in subsequent runs on the Triangular Patterna
(largest L patterns as tentative features, modified by intersections qp
unions with the remaining patterns) was yryn here with 35 Alphanumeyjc
Patterns taken from the printer aon the lBM card punch. These are 5 hy 7
arrays. The size parametey determining whether the intersection or the
union with a given tentative festure wam taken was evaluatged hy the
formula N DIV L + 1, whioh produced a value of 5 with 35 yetinal elements
and 8 features, since DIV produces the unrounded division of integers.
The first 20 letters of the alphabet (A through T) served as the
‘training set; the 15 remaining letters and numerals (U through Z and 1
through 9) served as the testing set. One set of results was obtained by
iterative modification of the composition matrix only for both sets.
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8 Features

Training pattern errors, 75 bits total, 3.75 bits average
Testing pattern errors, 122 bits total, 7.47 bhits average

Subsequently, both the composition matrix and the features were modified
through 10 iterations for the training set. Only the composition matrix
was modified for the testing set.

8 Features

Training pattern errors, 58 hits total, 3.90 bits average
Teating pattern errors, 117 bitsa tota}l, 7.80 bits average

Since the numerals exhibit rather different characteristic shapes from
the capitgl letters, the poor performance en the teating aet 18 not
surpriging. Considerahle error improvement with modificatian of the
features {ndicates that }he algorithm determining the injtial featurea
is not warking too wel}, It was reasoned that etarting with the }largest
patteyns might not resylt in sufficient diversjity among the tentative

features,

Run 39 -- Alphanumeric Patterns, The algorithm used ahove

was modified in the following way. Each time a patteyrn was chosen as

a tentative featuyre, all the rest of the patterns were tasted against
it. Those patterns which intersected the chosen tentatjve feature in

& number of elements @qual to or greater than twice the aize parameter
(2 x5 = 10 elements, far this case) were eliminated from conaideratiqn
as possible tentative faeatures, regardiess of their aizea. Otherwise,
the procedure was the same as that above. Additjonal printout was

. provided during the feature determining process sq that the detgiled
steps followed coyld be reconstructed by hand and apalyzed. All 3§
patterns were used as a training set. After determjination and iterative
modification of the composition matrix only, the results achieved were:

H

8 Features
Training pattern errors, 186 bits toial, §5.31 bits average

L A S ) S S |

58



RE-DRDER No. (oo 123

After 10 iterations involving modification of the features as well as

the composition matrix, this was reduced to
8 Features
Training pattern errors, 136 bits total, 3.89 bits average

‘These results cnnnot-be easily compared with the‘pre§ious run because
the size of the training set was different. -The fact that feature
modification led to significantly improved results indicates that the
algorithm determining the initial features should be capable of improve~
ment. Many patterns were removed from consideration early in the
feature determination because of large intersections with the first

couple of tentative features. '~

Run 40 -- Alphanumeric Patterns. Only one factor was altered

from fhe above run. This time, the criterion for elimination of a
pattern fronm fﬂrther consideration as a tentative feature was that its
intersection witﬁithe last-chosen tentative feature”be equal to or
greater than three times the size parameter (3 x 5 = 15, for this case).
With modification of ‘the composition matrix only, the following errors

were obtailned.
‘ 8 Features
Training pattern errors, 217 bits total, 6i29 bits average
After feature and composition—matrix.modification;
'8 Features

 Training pattern errors, 152 bits total, 4.34 bits average

This modification of the algorithm produced poorer results, both before

and after feature modification.

'

Run 41 -~ Alphanumeric Patterns, It was thought that perhaps

a better test as to whether a pattern should be eliminated from consid-
eration as a tentative feature would be one based on what fraction of
that pattern overlapped the previously chosen tentative feature. Thus

the criterion was changed so that if the overlap were equal to or:
59
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greater than 3/4 of the elements in the pattern under consideration,
then it was eliminated. With modification of the composition matrix .

only, the result achieved was:
8 Features
Training pattern errors, 167 bits total, 4.77 bits average

After iterative modification of both the features and the composition

matrix, the result was:.

3 v

8 Features
Training ﬁattern errors, 155 bits tbtal, 4.43 bits average

This is the best result obtained, to this point, before feature modifi-
cation. The result after_modification is still not as low as the minimum
achieved 1n'Run 39} however,'the‘chief obJectivg at this point was to
obtain the'best possible‘fesult'without such modification, since

iteration of feature modification i8 expensive in terms of computer time.

) ) It was noted in this run that when the 8th tentative feature had
’ been chosen, all of the training patterns had either been used or
eliminated from consideration. Thus it was seen that this algorithm
could be slightly modified to determine the number of features, as well

as their configurations.

Run 43 -- Alphanumeric Patterns. In order to eliminate one

arbitrary parameter, namely, the number of features to be determined,
the program was altered so that when each of the patterns had either
been used as a tenetative feature or eliminated from consideration, the
number‘df features was frozen. This run produced eight features and

error counts identical with those obtained in Run 41.

Run 44 -- Alphanumeric Patterns. In order to make the feature

determination process independent of the order in which patterns were
loaded into the system, the process was altered to order the patterns
by size. To check the sensitivity of the algorithm to the parameter
d etermining whether a pattern should be retained as a possible feature

I or eliminated, rounded division was used when the number of elements in

60
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each pattern was mcitiplied by 3/4. (Unrounded division of integers had
been previously employed.) This algorithm found 10 features and
produced the following results:

10 Features
Training pattern errors 194 bits total, 5.54 bits average

Thus the errors were greater than those produced in Runs 41 and 43,

even though there were two additional features.

Run 45 - Alphanumeric Patterns. Patterns were ordered again,

as in Run 44, with the largest patterns considered first. Unrounded
division was used when multiplying pattern size by 3/4. Again, eight
features were found, asvin Runs 41 and 43, where tentative features

. were determined by considering the patterns in order of decreasing size.
In performing unions and intersections, however, the remaining patterms
are now also considered in size sequence, leading to different final

features. The results were:
8 Features
Training pattern errors, 191 bits total, 5.46 bits average

Thus ordering of the patterns did not improve upon the results obtained
in Runs 41 and 43.

Run 46 -- Triangular Patterns. Although the algorithm em-

ployed in Run 45 was not optimized for the alphanumeric patterns, it
had evolved from experiments in which only the alphanumerics were used
(Runs 37 through 45), and it was anticipated that its performance on
a pattern set with very different statistics would be poor. This was
tested by running the Triangular Patterns with this algorithm, letting
the feature~determining process also determine the number of features.

Performance was as follows:

2 Features

Training pattern errors, 225 bits total, 5.63 bits average
Testing pattern errors, 226 bits total, 5.65 bits average

3 . . . [ TP T . e T
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By the time two tentative features had been found, all the rest of the
40 training patterns had been eliminated, since all of the smaller
patterns are essentially completely contained in the larger ones, as can

be seen from the two patterns selected as tentative features:

X X X X % x
X X X X x X X X
XX XX X A X X X xX X
X X x ’ XX XXX
x X X X X X

After taking intersections and unions with the remaining 38 training

patterns, the features had evolved to:

X X X X X X X X x-
SO s T X XX XX XX X X X I

X X XX X X X X X

x X X X X X X

v ‘ XX X'X X

. Obviously, many of the "reconstructed’ patterns were either wholly empty

or wholly filled. The .remaining ones were represented by the first
"feature." Error rate, expressed in total bits or bits per pattern, is
inadequate as a measure of such complete failure. : P

L .

Chronologically, experiments were next run on two quite different

‘ algorithms,'reported in a later section (Runs 47 through 57). A new

-pattern set was introduced in testing one of them, a set of 24 patterns

made up entirely of seven strokes on the 5-by-5 retina as shown in Fig.

14 of Ref. 1. Since this was the first set of any size which we had used
that was guaranteed reconstructable in terms of a small number of features,
it was of interest to run this set with the "intersections and unions”

algorithm,

Run 55--Seven-feature Patterns. - Same algorithm as Runs 45 and

46, which identified only two "features," - .

2 Features

! P

Training pattern errors 172 bits total, 7.17 bits average

Again, the result was total failure.

* & &

Looking over the results of runs to date, . it was decided that the

modifications made to this algorithm in Runs 37 through 45 had been
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56



REDRDER Mo -/ - -

unprofitable, as far as obtaining a general algorithm. The results
obtained during the parametric study, Runs 29 through 34, could no
longer be duplicated, to say nothing of improved. One question remained,
however, with regard to the generality of the earlier form of the
algorithm: Siqce 1: processed patterns in the (arbitrary) order in
which they were Lntrodqced,lhow sensitive might the result be to the
order of the patterns? The next several runs sought to answer this

question.

Runs 58, 60, 61, 62, 63, 64 -- Triangular Patterns. The

same algorithm as that used in Runs 30 through 34, except that the
size parameter was set equal to one plus the rounded quotient of the
number of retinal points divided by the number of features.sought, in
these cases, 1 + 25/9 = 4, All runs were identical except that the
training pattern deck was shuffled betweentruns:

. 9 Features

v Training pattern errors ' - Testing pattern errors
(total bits =-- average) (total bits - average)
85 2.13 103 2.58 Note 1
76 1.90 113 2.83 Note 2
81 - 2,02 106 2.65
- 88 - 2.20 129 3.23
86 2.15 114 2.85
81 2.02 115 2.88

‘Note 17 Patterns in original order, but slight change in
reprogramming this algorithm had the effect of
comparing the features with each pattern in
reverse order.

~Note 2: Patterns in original order, algorithm corrected.
Result same as in the first experiment of Run 30.

Mean values for the six runs:

Training pattern errors 82.83 bits total, 2.07 bits average
Testing pattern errors 113.33 bits total, 2.83 bits average

Root~mean-square deviation from the mean for the six runs:

Training patterns: 3.98 bits total, 0.10 bits average
Testing pﬁtterns: 8.44 bits total, 0.21 bits average
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The spread was really quite small, although the original run proved to
yleld the lowest error for the training set. It was concluded that
this algorithm is not particularly sensitive to the order of presenta-

tion of the Triangular Pattern set.

Run SRI 3 -- All three pattern sets. Feature determination
plus modification of the composition matrix only, as in the above runs.

Run on the SRI B5000.

Seven-Feature Patterns

Training pattern errors 36 bits total, 1.50 bits average

Although this 1is not a high error figure, it should be zero, since
the patterns are known to be capabie of reconstruction from seven

features., . v

Triangular Patterns -- 9 Features

Training pattern errors 76 bits total, 1.90 bits average

Testing pattern errors 113 bits total, 2.83 bits average
Same result as previously obtained -- same algorithm.

"Aiphanumeric Patterns -- 9 Features

Training pattern errors 183 bits total, 35.23 bits average

This is a larger error than had been obtained with 8 features with some
of the modifications of this algorithm that turned out to be fairly

specific to this pattern set.

Runs SRI 4, 5 -=- All three pattern sets. Feature determination

followed by iterative modification of both composition matrix and
features. Run SRI 4 employed ten iterations in the training process.
Since some values appeared to be still changing at this point, Run

SRI 5 employed twenty iterations for training.  Final results of the

- two runs were identical, as far as the error summary 1s concerned, but
some of the features diffgred in the two sets and, hence, some of the

reconstructions also differed.
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. Seven-Feature Patterns

Training pattern errors 17 bits total, 0.71 bits average

Even with iterative modification of the features, the error was not

:reduCed to its known minimum value of zero. s

Triangular Patterns -- 9 Features

Training pattern errors 65 bits total, 1.63 bits average
Testing pattern errors 88 bits total, 2.20 bits average

This result duplicates Run 35.

Alphanumeric Patterns -- 9 Features

Training pattern errors 144 bits total, 4.11 bits average

This result is:compnrable to,'bui not as low as, the result obtained

in Run 39 with 8 features.

Although the iterative algorithm, involving modification of both the’
composition matrix and the features, has produced the lowest error
rates and has been used as the standard of comparison, it is illus-
trated again here that it does not guarantee the minimum error

achievnble with a given number of features.

"e.' B5000 Runs -- Simplified Iterative Algorithm

ORI

The following experiments were suggested by Nils Nilsson
,”1n an attempt to provide a simplified scheme for iterative |,
>modif1cation of features that would be faster than the
.zexhaustive glgorithm run on the 7090 and subsequently on
the B5000. N

Run 47 -- Triangular Patterns, Nilsson's initial features,"

composition matrix initially empty. 1In this slgorithm, a

, feature was 1n¢luded in the reconstruction of a pattern if more than a
specified fraction, o ,Aot:the feature was included in the pattern. An
element was included in a feature if that element was present in more

than half the patterns to which it was assigned for reconstruction.
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‘ There is no interaction among features in this algorithm, and the

computation is simple and fast. Three values of were used in this run:

9 Features

Parameter Training Pattern Errors Testiﬂg Pattern Errors

9 (total bits -- average) (total bits - average)
0.50 233 . - 5.83 s T 268 6.70
0.65 231  5.78 260 6.50

- 0.80 230 - 9.78 i . 263 6.58

Independence of the features resulted in duplication of features. In
the first and last cases, only four distinct features resulted. The .
other case produced six distinct features. Errors did not always

decrease with successive iterations.

Run 48 -~ Triangular Patterns, Cluster features, composition

matrix initially empty. Aside from the fact that the initial
features employed were the cluster set (see Run 24), this run was

precisely the same as Run 47:;

‘ "* - 9 Features

Pirameter Training Pattern Errors Testing Pattern Errors

]

p "(total bits -- average) (total bits - average)
0.50 233 5.83 267 6.68
0.65 ‘ 230 5.75 251 6.28
0.80 230 5.75 263 6,58

Starting with the cluster features demonstrated that this algorithm
can be highly divergent. The initial feature assignment in each case
produced a total error of 81 bits, orljust over two bits per pattern
for the training set. Iteration of the assignment and feature-
modification processes nearly tripled the error. Only three distinct

features were produced in the first and last cases; sixXx, in the other.

Run 49 -- Triangular Patterns, Nilsson's initial features,

composition matrix initially empty. In this run, the algorithm

was modified to introduce the same parameter, ¢ , uSed in determining

(a4

he compsition matrix into the feature-modification procedure. An

element was included in' a feature if that element was present in more

' *
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than the fraction p of the patterns to which it was assigned for

reconstruction. The results, for the same range of parameter values,
were: ' ' ‘

9 Features

Parameter Training Pattern Errors Testing Pattern Errors

0 {total bits ~- average) (total bits - average)
0.50 233 5.83 268 6.70
0.65 204 5.10 240 6.00
¢.80 202 6.03

5.05 241

The first case is, of course, the same as that of Run 47, producing

four distinct features. The others appear somewhat better. Only three
distinct features were produced in the second case, and five in the

third. Starting with these initial features, this modification of the

algorithm produced some convergence toward minimum errors.

"Run 50 ~-- Triangular Patterns, Cluster features, composition

matrix initially empty. Aside from the fact that the initial

features employed were the cluster set and that one additional case

was added’ (p = 0.95), 'this run was precisely the same as Run 49:
9'Features’

. .Parameter Training Pattern Errors Testing Pattern Errors

D (Total bits -- average) (total bits - average)
0.50 233 5.83 267 6.68
0.65 179 4.48 233 5.83
0.80 178 4.45 215 5.38
0.95 100 2.50 120 3.00

The first case duplicates the first case of Run 48, producing
distinct features. Total error for the training set diverged
233 in 10 iterations. The second case produced four distinct
but diverged from 81 to 179 bits total error. The third case

five distinct features and diverged from 81 to 178 bits total

only three
from 81 to
features
produced

error.

In the final case, all nine features were distinct after 10 iterations,

and the error had changed from 114 to 100 bits total for the training

set.

iterations.

67

Seven of the nine original features emerged unchanged after 10

Two bits each had been added to the other two features.
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The final case exhibited somewhat strange behavior, illustrating the
instability of this algorithm. When the number of patterns or number
of elements in a pattern was multiplied by o, the result was rounded
and stored as an integer; thus in the comparisons which followed,
equality was always possible. The rule for handl;ng equality which had
proved most usefﬁl}in tite enrlier'iterétive algorithm (Run 21, at seq.)
was again used here, namely, reversal of the decision made on the
previous iteration. In an algorithm in which the several features
interacted, this rule provided a ''dither" which tended to move the
error off of any plateau encountered during convergence toward a mini-
mum value. Occasionally, a8 cyclic behavior was observed. Here, without
interaction among the features, cyclic behavior appears to be highly
probable. 1In the third case, pattern errors were cyclic for 27 of the
40 training patterns and constant after the first iteration for the
other 13. The total error fluctuated between two values. After initial
assignment of features to patterns (features as yet unmodified), the
error was 114 bits total. An iteration consisted of feature modification,
reassignment of features to patterns for reconstruction, and error
determination. After Iterations 1, 2, 4, 5, 7, and 8, the total error
for the training set was 387 bits. After Iterations 3, 6, and 9, the
total error was 100 bits. A final feature modification, completing

.ten total cycles through the process, left the result unchanged at

100 bits. Clearly, although the final error was less than the initial

error, the process could not be said to 'converge."

f. B5000 Runs -- Sequential Algorithm

Run 51 -- Seven-Feature Patterns. The pattern set employed

here consists of 24 patterns on a S x 5§ retina, as drawn in Fig. 14 of
Reference 1. All of the patterns can be perfectly reconstructed from
a set of seven simple features (three horizontal and three vertical

strokes, and one diagonal). This run merely determined features for a
range of values of the 8ize parameter 6 . Pattern reconstruction and

error determinations were not made. .

- . . Ly L .
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Parameter " Number of
5] . Features
e 14 -
14
14

10
6

bW

The 14 features determined in the first case included all of the seven
significant features generated by the "Parallel Algorithm" and displayed
~.'in Fig. 18 of Reference 1. The other "features" consisted of one or

twvo elements, totally redundant. None of the other cases produced a:

feature. set capable of perfect reconstruction of the input patterns.

Run 52 -- Triangglar Patterns. Determination of features’duly:

Saoceie Tl [N

"Parameter - Number of-- = -

>
N .

@ i U Peatures v U Th Tt
1 25 -
2 a5
3 23
4 17
.9 11

An upper limit on the number of features to be sought was entered into
these runs, along with the other data. In this case, the upper limit
was set at 25, equ#l to the number of retinal elements in the patterns
under consideration. The first case yielded one-element features,
each a separate retinal element. Even when the minimum feature size

was set at five elements (final case), eleven features were determined.

Run 53 -- Triangular Patterns. After determining featurqs,
the procedure assigned them to>pltterns in whichwthey were totally :
included, as a first step in reconstruction. .Following this, the

‘procedure for modification of the composition matrix was executed
through five ‘iterations, Only the training set was used for feature
determination., - . - I oo e g Ll T Tty
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Parameter Number of Training Pattern Errors Testing Pattern Errors

2] Features (total bits -~ average) (total bits - average)
2 25 31 Q.78 44 1.10
3 23 34 0.85 53 1.33
4 17 50 1.25 ) 65 1.63
5 11 82 2.05 116 2,90
6 11 83 2.08 111 2.77

- In the first case, although there were 25 ''features," equal to the

number of retinal elements, the training pattern set was not perfectly
reconstructed. At the other end of the experiment, the final case allows
a minimum feature size of six elements, yet 11 features are found and

the errors are not better than those produced by other algorithms for

nine features.

t

Run 54 -~ Seven-feature patterns. Same as Run 53, except

that the input patterns were the set derived from seven features. All

24 patterns were used as a training set; the testing set being empty.

Parameter Number of Training Pattern Errors
2] Features (total bits -- average)
1 14 0 0.00
2 14 15 0.63
3 14 ' 18 0.75
4 10 31 1.29
5

6 43 1.79

Only in the first case did this algorithm produce features sufficient
for perfect reproduction of these patterns synthesized from seven
features, and then it produced an equal number of redundant "features.'
As the size parameter was increased, to reduce the'number of features,
not only the fedundant members of the set were eliminated, but some

of the'essential members as well.

Run 56 -- Seven-Feature patterns. Same as Run 54 except that

a new output format was employed. For efficiency in earlier runs, :

patterns had been printed out in a one-line format, as

XXXXX X.... XXxX. X.... X....

70 .
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To one working closely with these patterns, this is easy to interpret;
however, to facilitate discussion with others“not.souintimately involvéd.
" the more graphic rectangular array output format was programmed:

XXXXX o X

X...X
Xo... coX X..XX
o XKMX. © ... X XXX Bte.t oo
> SU XX. . X
X.... XXXKX X...X

Ten 5-by-8 or 5-by-7 patterns print out simultaneously in this format.
Where the patterns have some meaning other than as arbitrary arrays of
elements, such as the llphanuneric set, this formnt permits immediate

" subjective evaluntion s to whether this meaning has been preserved in

the reconstruction of a given pnttern

Summary results of this run were identical with those obtained in
Run 54.

Run §7 -- Alphanumeric Patterns. This set of patterns was

run through the Sequential Algorithm to test its performance on a set
of patterns not constructed from a limited set of features. In order
to avoid excessive run time, computation was terminated after the

determination of 20 features for each case.

Parameter Number of Training Pattern Errors
Features (total bits -~ average)

1 20 187 5.34

2 20 266 7.60

3 20 158 4,51

4 20 130 3.71

5 20 122 3.49

It might have been interesting to continue this experiment with higher
values of the size parameter; however, it was reasoned at the time
that failure to converge to fewer than 20 features with a minimum size
of five elements amounted to failure of the algorithm to perform

satisfactorily with this pattern set.
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g. B5000 runs -- Digram Statistics of Pattern Sets

Runs 65, SRI 1, SRI 2 -~ All three pattern sets. These runs

were not'felture detection algorithms, but merely computations of the
frequencies of element pairs in the three sets of patterns. These
digram frequencies are presented in triangular arrays. The diagonal
elements are the numbers of times each element occurred with itself

in the pattern set, and are thus the frequencies of the individual

elements.

.The line patterns, Seven-Feature set and Alphanumeric set,‘exhibit
wide variations in the digram frequencies. The "blob" patterns, i.e.,
" the Triangﬁlar sat, éxhiﬁit small variations, with a fairly uniform

decrease in frequency with distance between elements.
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